Rim curvature anomaly in thin conical sheets revisited.

نویسنده

  • Jin W Wang
چکیده

This paper revisits one of the puzzling behaviors in a developable cone (d-cone), the shape obtained by pushing a thin sheet into a circular container of radius R by a distance η. The mean curvature was reported to vanish at the rim where the d-cone is supported. We investigate the ratio of the two principal curvatures versus sheet thickness h over a wider dynamic range than was used previously, holding R and η fixed. Instead of tending toward 1 as suggested by previous work, the ratio scales as (h/R)(1/3). Thus the mean curvature does not vanish for very thin sheets as previously claimed. Moreover, we find that the normalized rim profile of radial curvature in a d-cone is identical to that in a "c-cone" which is made by pushing a regular cone into a circular container. In both c-cones and d-cones, the ratio of the principal curvatures at the rim scales as (R/h)(5/2)F/(YR(2)), where F is the pushing force and Y is the Young's modulus. Scaling arguments and analytical solutions confirm the numerical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Scaling Laws for Conically Constrained Thin Elastic Sheets

We investigate low-energy deformations of a thin elastic sheet subject to a displacement boundary condition consistent with a conical deformation. Under the assumption that the displacement near the sheet’s center is of order h| logh|, where h ! 1 is the thickness of the sheet, we establish matching upper and lower bounds of order h2| logh| for the minimum elastic energy per unit thickness, wit...

متن کامل

Compensation of Gaussian curvature in developable cones is local.

We use the angular deficit scheme [V. Borrelli, F. Cazals, and J.-M. Morvan, Comput. Aided Geom. Des. 20, 319 (2003)] to determine the distribution of Gaussian curvature in developable cones (d-cones) [E. Cerda, S. Chaieb, F. Melo, and L. Mahadevan, Nature (London) 401, 46 (1999)] numerically. These d-cones are formed by pushing a thin elastic sheet into a circular container. Negative Gaussian ...

متن کامل

Curvature generation in nematic surfaces.

In recent years there has been a growing interest in the study of shape formation using modern responsive materials that can be preprogrammed to undergo spatially inhomogeneous local deformations. In particular, nematic liquid crystalline solids offer exciting possibilities in this context. Considerable recent progress has been made in achieving a variety of shape transitions in thin sheets of ...

متن کامل

How two-dimensional bending can extraordinarily stiffen thin sheets

Curved thin sheets are ubiquitously found in nature and manmade structures from macro- to nanoscale. Within the framework of classical thin plate theory, the stiffness of thin sheets is independent of its bending state for small deflections. This assumption, however, goes against intuition. Simple experiments with a cantilever sheet made of paper show that the cantilever stiffness largely incre...

متن کامل

The effects of rate sensitivity and plastic potential surface curvature on plastic flow localization in porous solids

Plastic flow localization in porous elastic-viscoplastic solids is analyzed with an emphasis on the effects of material rate sensitivity and plastic potential surface curvature. The effect of rate sensitivity is included in a material model that accounts for a change of yield surface curvature in a rate-insensitive porous ductile solid. Shear band formation under plane strain and axisymmetric t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 84 6 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2011